CORRIGENDUM

J. P. Buhler, R. E. Crandall \& M. A. Penk, "Primes of the form $n!\pm 1$ and $2 \cdot 3 \cdot 5 \cdots p \pm 1$," Math. Comp., v. 38, 1982, pp. 639-643.

The list of primes of the form $2 \cdot 3 \cdot 5 \cdots \cdots \cdot p-1$ given on p .640 is not complete. An additional prime occurs; namely, for $p=337$. The primality of $N=2 \cdot 3 \cdot 5$. $\cdots \cdot 337-1$ can be proved using the Lucas-Lehmer sequence $\left\{U_{k}\right\}$ corresponding to $P=5, Q=7, D=-3$; see [1, Theorem 13]. It is then easily verified that $(D / N)=-1, p \mid U_{N+1}$ and, for all primes $p \leqslant 337, p \nmid U_{(N+1) / p}$.

The prime to be inserted was detected by determining all pseudoprimes base 13 of the forms $n!\pm 1$ for $n \leqslant 440$, and those of the forms $2 \cdot 3 \cdot 5 \cdot \cdots \cdot p \pm 1$ for $p \leqslant 2473$.

Wilfred Keller
Rechenzentrum der Universität Hamburg
Hamburg, Federal Republic of Germany

1. John Brillhart, D. H. Lehmer \& J. L. Selfridge, "New primality criteria and factorizations of $2^{m} \pm 1, "$ Math. Comp., v. 29, 1975, pp. 620-647.
